# Counting graded lattices of rank 3 that have few coatoms

@article{Kohonen2019CountingGL, title={Counting graded lattices of rank 3 that have few coatoms}, author={Jukka Kohonen}, journal={Int. J. Algebra Comput.}, year={2019}, volume={29}, pages={663-680} }

We consider the problem of computing [Formula: see text], the number of unlabeled graded lattices of rank [Formula: see text] that contain [Formula: see text] coatoms and [Formula: see text] atoms. More specifically, we do this when [Formula: see text] is fairly small, but [Formula: see text] may be large. For this task, we describe a computational method that combines constructive listing of basic cases and tools from enumerative combinatorics. With this method, we compute the exact values of… Expand

#### References

SHOWING 1-10 OF 21 REFERENCES

An inductive algorithm to construct finite lattices

- Mathematics
- 1979

G. Birkhoff [ 1 l proposed the following problem: Enumerate all finite lattices which are uniquely determined (up to isomorphism) by their diagram, considered as a graph. It is not known how many… Expand

How to Count: An Introduction to Combinatorics, Second Edition

- Mathematics
- 2010

Emphasizes a Problem Solving ApproachA first course in combinatorics Completely revised, How to Count: An Introduction to Combinatorics, Second Edition shows how to solve numerous classic and other… Expand

How to count : an introduction to combinatorics

- Mathematics
- 2011

What's It All About? What Is Combinatorics? Classic Problems What You Need to Know Are You Sitting Comfortably? Permutations and Combinations The Combinatorial Approach Permutations Combinations… Expand

Generating all finite modular lattices of a given size

- Mathematics
- 2015

Modular lattices, introduced by R. Dedekind, are an important subvariety of lattices that includes all distributive lattices. Heitzig and Reinhold [8] developed an algorithm to enumerate, up to… Expand

On the Number of Distributive Lattices

- Mathematics, Computer Science
- Electron. J. Comb.
- 2002

We investigate the numbers $d_k$ of all (isomorphism classes of) distributive lattices with $k$ elements, or, equivalently, of (unlabeled) posets with $k$ antichains. Closely related and useful for… Expand

The On-Line Encyclopedia of Integer Sequences

- Mathematics, Computer Science
- Electron. J. Comb.
- 1994

The On-Line Encyclopedia of Integer Sequences (or OEIS) is a database of some 130000 number sequences which serves as a dictionary, to tell the user what is known about a particular sequence and is widely used. Expand

Counting Finite Lattices

- Mathematics
- 2002

Abstract. The correct values for the number of all unlabeled lattices on n elements are known for $ n \leq 11 $. We present a fast orderly algorithm generating all unlabeled lattices up to a given… Expand

Constructing unlabelled lattices

- Mathematics, Computer Science
- ArXiv
- 2016

Abstract We present an improved orderly algorithm for constructing all unlabelled lattices up to a given size, that is, an algorithm that constructs the minimal element of each isomorphism class… Expand

The Asymptotic Number of Lattices

- Mathematics
- 1980

Publisher Summary The chapter considers the question discussed upon the “lattices” as construct. There have been some explicit numerical results for small values of n. The chapter describes two… Expand

Endliche Verbände.

- 1971

Der Beweis zerfällt in zwei Teile: In § l wird die Richtigkeit der oberen Schranke durch die Abzählung von Ordnungsdiagrammen gezeigt; § 2 ist der Konstruktion einer speziellen Klasse von Verbänden… Expand